文章编号:1002-8692(2004)09-0090-02

基于示波器原理的 低频逻辑分析仪设计与实现

·电路设计·

蔡波

(西南科技大学 信控学院,四川 绵阳 621002)

【摘 要】介绍了采用 AVR8535 单片机设计的简易逻辑分析仪的功能、系统组成和软硬件电路的设计方法。简单设计了一台能够同时在示波器屏幕上显示 8 个被测数据通道的逻辑真值表或时间状态的简易逻辑分析仪,阐述了设计思想和工作原理,并给出实验电路及相应的实验结果。

【关键词】逻辑分析仪; AVR8535 单片机; 多踪显示; 逻辑状态; 示波器

【中图分类号】TP368.2

【文献标识码】B

Design and Realization of Low Frequency Logic Analyzer Based on Oscilloscope

CAI Bo

(Institute of Information and Control Engineering Southwest University of Science and Technology, Mianyang 621010, China)

[Abstract] The function of a simple and easy logic analyzer, which is designed by using the AT90S8535 microcomputer system, its system constitution and the design of software and hardware are introduced. And a logical analyzer for displaying the logical time-state or truth table of eight-channel data simultaneously on an oscilloscope is designed. The idea of design and the principle of function are described in detail. The experimental circuit and it's results are also presented.

[Key words] logic analyzer; AT90S8535 microcomputer system; multi-trace display; logical state; oscilloscope

在数字电路设计中,往往需要分析电路的逻辑 关系和波形,采用普通的示波器分析时,最多只能 测试两路波形,而用能显示多路信号时间关系及其 状态关系的逻辑分析仪则价格很贵。为克服这一困 难,笔者根据示波器的基本原理设计了一个接口电 路,它与示波器一起就组成简易逻辑分析仪,扩展 了示波器功能。此接口电路简单、易制,且价格低 廉、性能稳定,用于高校的数字电路设计实验和一 些低频环境下完全能够满足使用需要。

1 系统结构和功能

图 1 为系统结构功能框图。

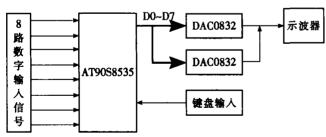


图 1 系统结构功能框图

主要功能和性能指标:

- 1) 可同时显示 8 路逻辑信号波形;
- 2) 具有 4 种采样频率,可以通过键盘输入来选择;
 - 3) 触发状态可以控制,可分段测试被测信号;
- 4) 能同时存储 8 路逻辑信号,每路的存储深度为1 KB,即可存储1 KB 个样值;

- 5) 可适应不同的电平信号。
- 2 电路设计

2.1 硬件电路设计

2.1.1 控制系统电路

控制系统采用 AT90S8535 单片机,它有 4 KB 的 EPROM,能存储采样数据 2 KB。由于不需要外接程序存储器而使电路简单。电路结构图如图 2 所示。

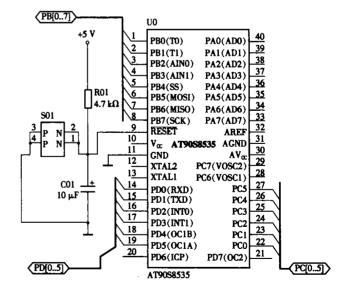


图 2 系统硬件结构图

被测信号由 AT9058535 的 PA0~PA7 口采样输入,PB0~PB7 口输出;数模转换控制信号由 PC7 和PC6 输出,提供被测信号和同步信号。PC 的 5 个端

STANDARDS, TESTING & EQUIPMENT

口用干键盘信号的接收,使用时可针对不同的输入 信号系统作相应调整。

2.1.2 逻辑状态与波形显示输出电路

逻辑状态与波形显示采用示波器的 X-Y 工作 方式,示波器的垂直轴和水平轴的偏转电压由外部 提供,屏幕上每一个位置都对应一个 X-Y 坐标。本 设计通过软件编程的方式,提供 X 轴所需的锯齿波 信号和 Y 轴需要的输出序列脉冲信号, 经过 DAC0832 构成两路 DAC: 一路产生同步锯齿波扫描 信号,一路产生被测逻辑序列信号,分别送到 X,Y 轴即可。电源由集成稳压器件 W7805 提供+5 V 电 压, W7812 和 W7912 提供±12 V 电压。

数据转换电路如图 3 所示。

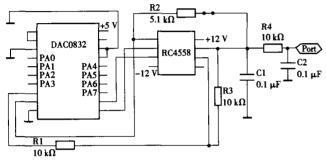


图 3 数模转换电路

2.2 软件设计

软件开发采用 C 语言,基本功能模块有:键盘 模块(扫描键盘有无输入,有输入时送 LED 显示模 块)、显示模块(显示用户输入内容)、中断模块(输 出到示波器的电平信号和扫描同步信号,并根据脉 冲计数,控制示波器上显示波形的周期长度)和采 样模块(根据需要,设定显示逻辑电平的深度)。

系统主程序流程如图 4 所示。

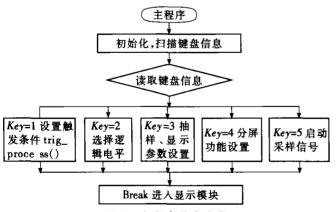


图 4 主程序基本流程

系统软件尽量采用模块化设计,使调测和修改 程序方便。程序调测通过后面化到 AT90S8535 中。 逻辑分析仪允许用户设置抽样/显示参数,设置后按 测试启动信号键,逻辑分析仪自动采样、存储,随后 发出8路被测信号和同步信号,被测信号同时显示 在示波器上。

接通电源,系统进入工作状态,系统初始化。软

件首先判别有无启动信号,有启动信号后,读取采 样起点控制值和采样频率控制值。软件根据用户设 定的采样频率进行采样,并将样值和起点控制值进 行比较, 直到相同后, 对测试逻辑信号的采样值进 行存储。数据区满后,AT90S8535 发出同步信号,作 为多踪显示电路的时钟信号和示波器的外触发信 号,然后单片机输出采集到的数据,将各路波形经 过多踪显示电路输出到示波器上。

测试结果分析

1) 采集逻辑信号功能

以 100 Hz 采样频率采集胡子信号发生器输出 的 8 路逻辑信号序列并存储, 在 20 MHz 模拟示波 器上清晰稳定地同时显示出采集到的8路信号序 列。当逻辑信号序列变化时,在示波器上能观察到 信号序列的变化。当采集到的逻辑电平与触发字所 设定的逻辑状态相同时,以触发字所在的点为起始 位置,在示波器上显示一屏,并显示触发点位置。

2) 输入阻抗和触发条件测试

输入阻抗在测试中大于 $50 \text{ k}\Omega$,从键盘输入不 同的触发条件时,能够连续捕捉到设定的触发字状 态,并开始进行信号采集、存储及在模拟示波器上 显示(同时显示触发点位置),键盘输入的触发状态 字在 LED 上显示。

3) 输入电路逻辑门限电压的适应性测试

将8路数字信号发生器的跳线拔掉,接入函数 信号发生器输出方波,作为一路逻辑信号序列,并 调节幅值大小,由按键确定逻辑门限电压,并在示 波器上观测输入波形,在适合的电压条件下,能够 在示波器上正确地观测到输入波形。

本文所设计的逻辑分析仪对一般低频信号均 能测试,对8通道数据能够稳定地显示在示波器 上,对于一些低频环境下的逻辑分析完全能够满 足,而且整个系统电路简单,软件编程容易。

参考文献

- [1] 何立民. 单片机应用系统设计. 北京:北京航空航天大学
- [2] 耿得根,等. AVR 高速嵌入式单片机原理与应用. 北京: 北京航空航天大学出版社,2002.
- [3] 谢自美. 电子线路设计、实验、测试. 武汉:华中理工大学 出版社,2001.
- [4] 薛钩义,等. MCS-51.96 系列单片微型计算机及其应用. 西安:西安交通大学出版社,1996.
- [5] 朱震华,储婉琴. 简易逻辑分析仪的设计与实现. 实验室 研究与探索,2001(4).
- [6] 鲜永菊. 示波器功能扩展电路——简易逻辑分析仪的研 制. 重庆邮电学院学报,2000(3). **�**

作者简介:

蔡 波(1973-),硕士,讲师。

责任编辑: 刘伯义 收稿日期: 2004-05-27